ХАРКІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИПІЕПТ ІМ. В.Н. КАРАЗІНА КАФЕФРА ХІМІЧНОГО МАПТЕРІАЛОЗНАВСПІВА

Спецкурс «Сучасний органічний синтез»

(Частина 2. Промислове виробництво органічних речовин і матеріалів)

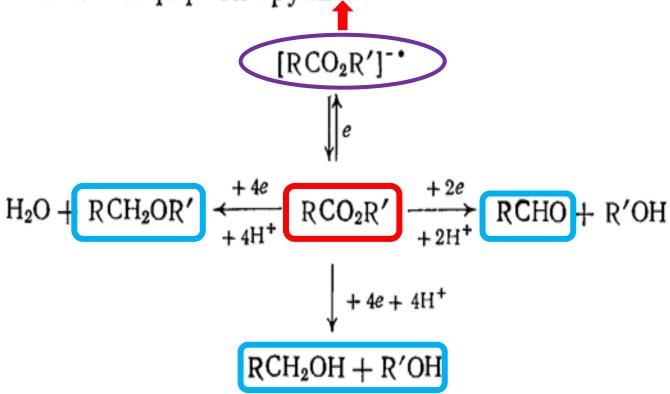
Ілюстративний матеріал до теми: Електрохімічні перетворення органічних сполук. Ч. 2

Доцент КХімМат ХФ Шкумат А.П

Харків - 2020

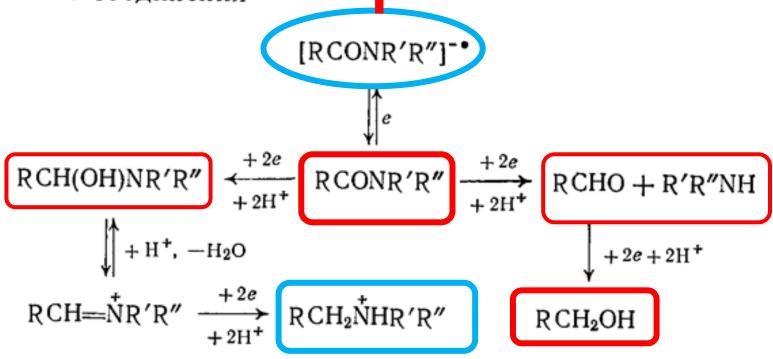
Восстановление қарбоновых қислот и их производных

Катодное восстановление карбоновой кислоты может приводить либо к соответствующему альдегиду (двухэлектронный процесс), либо к спирту (четырехэлектронный процесс) (уравнения 1,2).


$$\begin{array}{c}
 \xrightarrow{+2e + 2H^{+}} & RCH(OH)_{2} & \longrightarrow & RCHO + H_{2}O \\
 & RCHO & \longrightarrow & RCH_{2}OH
\end{array} \tag{1}$$

Альдегиды, как правило, восстанавливаются при менее отрицательных потенциалах, чем карбоновые кислоты, поэтому остановить восстановление на стадии образования альдегидов довольно трудно. Тем не менее это возможно в отдельных случаях,

Эстеры. Лақтоны. Ангидриды.


Общее уравнение

описывает все перечисленные возможные направления реакции, но дальнейшее обсуждение будет касаться в основном восстановления сложноэфирной группы.

Амиды, лактамы, имиды и гидразиды

В сильнокислых средах на ртутном и свинцовом катодах карбонильные группы амидов, лактамов и имидов восстанавливаются обычно до метиленовой группы. В менее кислых средах возможно расщепление связей, и в зависимости от структуры субстрата и условий проведения реакции могут образоваться различные соединения

Нитрилы

Нитрилы

В кислой среде как алифатические, так и ароматические нитрилы восстанавливаются до аминов, тогда как в нейтральной или щелочной среде происходит разрыв связи С—С. Однако α,β-ненасыщенные нитрилы в нейтральной или щелочной среде легко гидродимеризуются.

$$\begin{array}{c} +2e \\ +4H^{+} \end{array} RCH_{2}NH_{2}$$

$$\begin{array}{c} +2e \\ +H^{+} \end{array} RH + CN$$

Окисление углеводородов

$$(RH)^{+ \cdot \cdot} \xrightarrow{Nu^{-}} \dot{R}HNu \qquad (RH)^{+ \cdot \cdot} \xrightarrow{B} R \cdot + BH^{+}$$

$$(1) \qquad (2)$$

$$\dot{R}HNu \xrightarrow{-e} \dot{R}HNu \qquad R \cdot \xrightarrow{-e} R^{+}$$

Образовавшиеся катионы превращаются в нейтральные продукты на второй химической стадии реакции с пуклеофилом и (или) с основанием в электролите.

-	ы окисления	-		-
некоторых	ароматических	gene	8000p	70008

Углеводород	E _{1/2} (E _{1/2} ; отн. Ag/Ag ⁺), В	$E_{\pi} [E_{\pi} (E_{\pi/2});$ отн. Ag/Ag ⁺], В
Бензол		2,81 ^{a, *}
Толуол	$(1,98^{-6}; 1,93^{B})$	
п-Ксилол	$(1,56^{6})$	_
Мезитилен	1,90 a (1,55 ⁶)	[1,72 ^r (1,67 ^r · *)]
Дурол	1,62 a (1,29 d)	[1,43 ^r (1;37 ^{r, *})]
Пентаметилбензол	1,62 a (1,28 b)	- (1,5)
Гексаметилбензол	1,52 a (1,16 b)	[1,26 ^r (1,19 ^{a, *})]
Нафталин	1.72 a (1.34 b; 1.31 b)	1,87 ^a
Антрацен	1,20 ° (0,84 ^A)	1,31 ^{е.} **; 1,17 ^{ж, **}
		1,40 ^{3, **;} 1,33 ^{H, *}
		[1,13 ^{k,} **]
9,10-Дифенилантрацен	(0,86 ^A)	1,20 ^{e, **} ; 1,14 ^{ж, **}
э,го дифенитантрацен	(0,00)	1,27 ^H · ** [0.20 ^π · **]
Бифенил	1,91 ° (1,48 °)	1,27 [0.20]
Флуорен	1,65 a (1,32 ^M ; 1,25 b)	
Перилен	1,00 (1,02 , 1,20)	1,09 ^a , **
repairen	*,0	1,03

^а HOAc + NaOAc [26]. ⁶ MeCN + NaCIO₄ [5]. ⁸ MeCN + NaCIO₄ [22]. ^r MeCN + Bu₄NBF₄ [14]. ^д MeCN + NaCiO₄ [27]. ^e CH₂Cl₂ + HOAc + (CF₃CO)₂O + NaCiO₄ [28]. ^ж MeCN + (CF₃CO)₂O + NaCiO₄ [28]. ³ MeCN + Bu₄NBF₄ + Al₂O₃ [25]. ⁸ CH₂Cl₂ + Bu₄NBF₄, CH₂Cl₂ + CF₃COOH + (CF₃CO)₂O + Bu₄NBF₄ [6]. ⁸ PhCl + Bu₄NBF₄ [10]. ⁷ SO₂ + Bu₄NCiO₄; отн. Ag₂SO₄/SO₂ [11].

MeCN + (CF3CO)2O + Bu4NBF4 [29].

^{*} Необратимый процесс. ** Обратимый процесс.

$$\longrightarrow$$
 Me—CH₂CH₂—Me

Анодное окисление солей қарбоновых қислот (синтез Кольбе).

Анодное окисление карбоксилатов щелочных металлов в соответствующем растворителе является самым старым и, возможно, наиболее полезным процессом электросинтеза в органической химии. Его обычно называют электросинтезом Кольбе.

$$2RCOO^{-} \xrightarrow{-2e} R-R + 2CO_{2}$$

При совместном электролизе двух различных карбоксилатов наряду с двумя симметричными продуктами образуются продукт перекрестного сочетания:

Окисление қарбоқсилатов и реакция с нуклеофилами


Реакции двухэлектронного окисления

В некоторых случаях, когда элиминирование или перегруппировка электрохимически генерированного катиона затруднены или же когда катион очень устойчив, уменьшается число образующихся побочных продуктов. В связи с этим двухэлектронное окисление карбоксилатов в присутствии нуклеофила или в нуклеофильном растворителе может найти применение в препаративном электролизе

$$RCO_2^- \xrightarrow{-e, -CO_2, -e} R^+ \xrightarrow{Nu^-} RNu$$

Примеры реакций окисление КК

1.

2. $ArCH_2CO_2H \xrightarrow{P} [ArCH_2OMe] \xrightarrow{Pt} ArCH(OMe)_2$

$$H_{2O, H^{+}}$$

$$\downarrow MeOH$$
ArCHO ArC(OMe)₃

3. PhCH(OEt)CO₂H
$$\xrightarrow{Pt}$$
 PhCH(OMe)OEt (71 %)

PhCONHCH(Me)CO₂H \xrightarrow{Pt} PhCONHCH(Me)OMe (91 %)

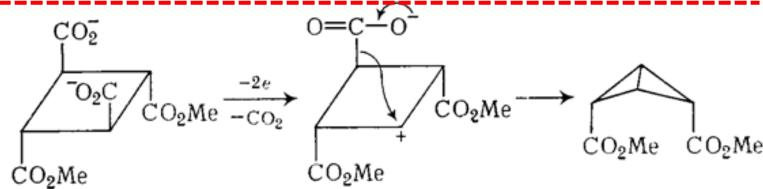
Примеры реакций окисление КК

4. RCOCO₂H
$$\xrightarrow{Pt}$$
 RCO₂Me [82 % (R = Me); 73 % (R = Et); 66 % (R = μ -Pr)]

Me₂CCO₂Me
$$\downarrow \qquad \qquad Pt \qquad Me2CCO2Me$$

$$\downarrow \qquad \qquad Me2CN+H2O \qquad Me2CN+HCOMe$$

$$(25 \%)$$


Анодный метод бисдекарбоксилирования - конкурент метода окисления тетраацетатом плюмбуму (ур. 6-8):

6.
$$CO_{2}H \xrightarrow{CO_{2}H} Pt \xrightarrow{C_{5}H_{5}N(90\%)-H_{2}O} (35\%)$$

Примеры реакций окисление КК

І-малеиновый ангидрид; гидролиз; 2-Рt-анод, C₅H₅N(90 %)—H₂O

9. Наиболее вероятен 2-х электронный механизм электролиза:

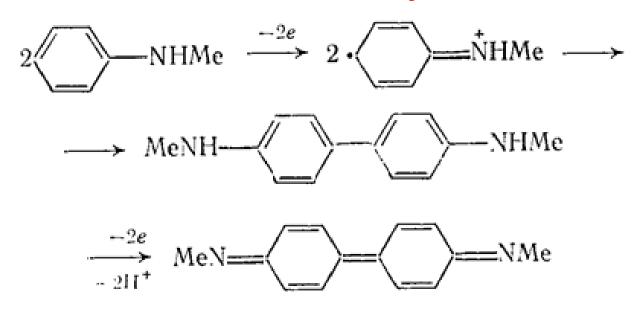
OKUCAEHUE AMUHOB

Первичные амины

$$3MeNH_2 \xrightarrow{1} CH_2=NH + 2MeNH_3 C1^ CH_2=NH + MeNH_2 \implies H_2NCH_2-NHMe \xrightarrow{-NH_3} + NMe$$

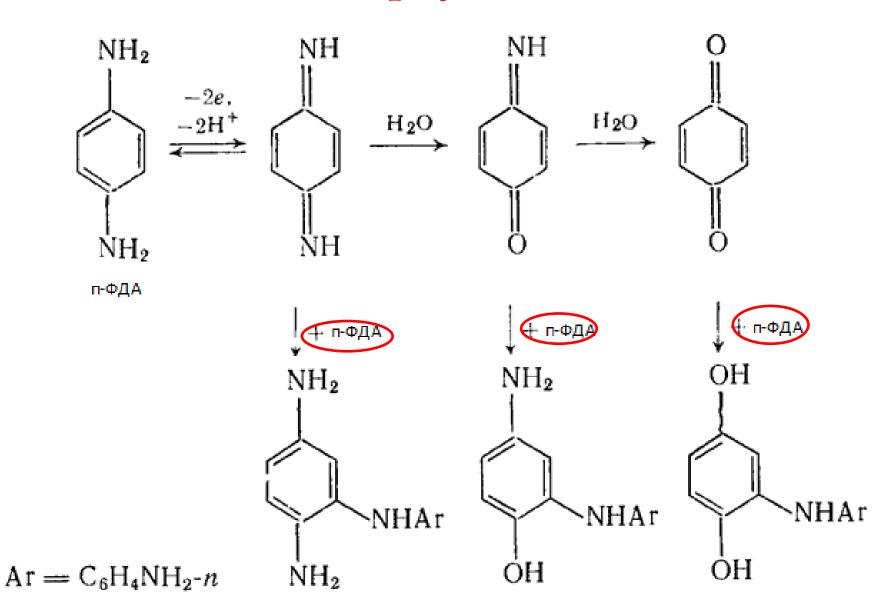
$$\implies CH_2=NMe \implies 1/3 \qquad NMe$$

$$MeN \searrow NMe$$


$$(1)$$

1 -- анодное окисление или окисление хлором, образующимся на аноде из хлорид-иона.

$$\begin{array}{c} \text{ArNH}_2 - e \longrightarrow [\text{ArNH}_2]^+ \cdot \\ [\text{ArNH}_2]^+ \cdot + \text{C}_5 \text{H}_5 \text{N} \longrightarrow \text{ArNH} + \text{C}_5 \text{H}_5 \overset{\dagger}{\text{N}} \text{H}} \\ 2 \text{ArNH} \longrightarrow \text{Ar-NH-NH-Ar} \\ \text{Ar-NH-NH-Ar} - 2e \stackrel{2 \text{C}_5 \text{H}_5 \text{N}}{\longrightarrow} \text{Ar-N=N-Ar} + 2 \text{C}_5 \text{H}_5 \overset{\dagger}{\text{N}} \text{H}} \end{array}$$


Анодное окисление

N-метиланилина и дифениламина

$$2PhNH \longrightarrow PhNH \longrightarrow NHPh \longrightarrow -2e, \\ -2H^{+}$$

Оқисление пара-фенилендиамина

Фенолы

Анионное окисление фенолов

Первая стадия:

Примеры

При исчерпывающем электролизе раствора 2,6-ди-трет-бутил-4-метилфенола (1) в ацетонитриле в присутствии метанола получено соединение (3) * с выходом 65 %; процесс, вероятно, идет через промежуточное образование иона феноксония * (2)

R

OH

R

$$\xrightarrow{-2e}$$

R

 $\xrightarrow{-R}$

R

 $\xrightarrow{-H^{+}}$

R

 $\xrightarrow{-H^{+}}$

R

 $\xrightarrow{-R}$
 $\xrightarrow{-H^{+}}$

R

 $\xrightarrow{-R}$
 $\xrightarrow{-H^{+}}$
 $\xrightarrow{-H^{+}}$
 $\xrightarrow{-R}$
 $\xrightarrow{-R}$

(3) – 2.6-ди-трет-бутил-4-метил-4-метоксициклогексадиен-2,5-он

Продолжение слайда

При выдерживании раствора, содержащего феноксониевые йоны, могут образовываться димеры:

Образование продукта вследствие сочетания нейтральных радикалов

Если R – электронодонорная группа

$$\begin{array}{c|c}
OH & O \\
\hline
 & -2e \\
\hline
 & OH
\end{array}$$

$$\begin{array}{c|c}
O \\
\hline
 & OH
\end{array}$$

в противном случае

Электролиз 2,4,6-триарилфенолов дает до 100 % смеси орто-, мета- и пара-ацетоксидиенонов

Превращение 2,6-ди-трет-бутил-4-метилфенола

OH
$$R \xrightarrow{-2e} R \xrightarrow{-R^+} R \xrightarrow{PhOR'} OR'$$

$$R \xrightarrow{PhOR'} OR'$$

$$R = Bu-\tau per, R' = H, Me$$

$$R = Bu-\tau per, R' = H, Me$$

Образование бис-продукта путем сочетания нейтральных радикалов

Окисление в ацетонитриле приводит к образованию Ar-ацетамида

Электрохимическое превращение 4-метилпирокатехина (1) и метилового этера гидрохинона (2)

1.

HO

Me

$$-2e$$
 $-2H^{+}$

O

Me

 H_{2O}
 $-2H^{+}$

O

 H_{2O}
 $-2H^{+}$

O

 H_{2O}
 $-2H^{+}$
 H_{2O}
 $-2H^{+}$
 H_{2O}
 $-2H^{+}$
 $-2H^{+}$

Заместители в нсходном феноле	Анод	Среда	Заместители в продукте реакцин	Выход, %
			Циклогексадиен - 2,5 -	оны а
Незамещенный	C	MeOH, LiClO ₄ NaHCO ₃	4,4-Диметокси-	46
4-Метил-	ПСЭ б	2 н. H ₂ SO ₄	4-Гидрокси-4-метил-	50
2,4-Диметил-	ПСЭб	MeCN, 2 н. H ₂ SO ₄	4-Гидрокси-4-метил-	44
2,6-Диметил-	Pt	MeOH, LiClO₄, NaHCO₃	4,4-Диметокси-	28
2,6-Ди <i>-трет</i> -бутил-	C	MeOH, LiClO ₄ , NaHCO ₃	4,4-Диметокси-	78
2,4,6-Триметил-	псэ б	MeCN, 2 H. H ₂ SO ₄	4-Гидрокси-4-метил-	81 95
2,6-Ди- <i>трет</i> -бутил-4-метил-	C	MeOH, LiClO ₄ , NaHCO ₃	4-Метил-4-метокси-	95
	Pt	MeCN, H ₂ O, LiClO ₄ , 2,6-ДМП ^в	4-Гидрокси-4-метил-	86
	Pt	MeCN, H ₂ O, LiClO ₄ , NaOAc	4-Ацетокси-4-метил-	91
207	Pt	MeCN, Bu ₄ NBF ₄ , анизол	4-Анизил-4-метил-	81
2,6-Ди-трет-бутил-4-этил-	Pt	MeCN, NaClO ₄ , H ₂ O	4-Гидрокси-4-этил-	93
2,4,6-Три- <i>трет</i> -бутил-	Pt	MeCN, H_2O , LiClO ₄ , 2,6-ДМП ^в	4-трет-Бутил-4-гидрокси-	97
	Pt	MeCN, ClO ₄ , MeOH	4-трет-Бутил-4-метокси-	93; 95
	Pt	MeCN, H ₂ O, NaOAc	4-Ацетокси-4-трет-бутил-	94
2,4,6-Трифенил-	Pt	MeCN, H₂O, NaClO₄	4-Гидрокси-4-фенил-	87
	Pt	MeCN, NaClO₄, MeOH	4-Метокси-4-фенил	80
	_		<i>n</i> - Бензохиноны	
Незамещенный	Pt .	MeOH, LiClO ₄ , NaHCO ₃	Незамещенный	37
2-Метил-	ПСЭ б	2 н. H ₂ SO ₄	2-Метил-	61
2,6-Диметил-	псэ б	2 н. H ₂ SO ₄	2-Диметил-	56
3,5-Диметил-	PbO_2	2 н. H ₂ SO ₄	3,5-Диметил-	84
2,4,6-Три- <i>трет</i> -бутил-	Pt, C	MeCN, H₂O, NaClO₄	2,6-Ди- <i>трет</i> -бутил-	80; 85
0 6 П	D4	M-CN LICIO	Лифенохиноны	00
2,6-Диметил-	Pt	MeCN, LiClO ₄	2,2',6,6'-Тетраметил-	90
2,6-Ди- <i>трет</i> -бутил-	Pt	MeCN, LiClO ₄	2,2',6,6'-Тетра- <i>трет</i> -бутил-	85

а Приведены только заместители в положении 4: заместители в других положениях—те же, что в исходном феноле.

⁶ Полированный свинцовый электрод. ^В 2,6-Диметилпиридии.

Спирты и их производные

Электрохими ческое окисление пара-метоксибензилового спирта

MeO—CH₂OH
$$\xrightarrow{135 \text{ B}}$$
 MeO—CHO

MeO—CH₂OH
$$\stackrel{-e}{\longleftrightarrow}$$
 $\stackrel{-e}{\longleftrightarrow}$ $\stackrel{-e}{\longleftrightarrow}$ $\stackrel{-e}{\longleftrightarrow}$ MeO—CHO

Полимер

Электроокисление алифатических спиртов

Окисление первичных алифатических спиртов на аноде из гидроксида никеля в различных условиях

I — 1 M NaOH (водн.), 25 °C, 4 A; II — трет-ВиОН—H₂O (1:1), 0,18 M KOH, 25 °C, 0,6 A; III — 1 M NaOH (водн.), 70 °C, 4 A

Исходный спирт	Выход кислоты ^а , %		rы ^а , %	Manageria	Выход кислоты а, %		
	I	11	111	Исходный спирт	I	II	111
Бутанол Гексанол Октанол Нонанол Деканол	74 (2) 64 (5) 65 (6) 26 (5) 27 (4)	92 (15) 91 (15) 49 (20) 13 (22) 12 (66)	89 (4) 89 (7)	Октадеканол 2-Этилгексанол Гексен-3-ол Гептен-4-ол Нонен-4-ол	31 (5) 22 (4) 82 (4)		77 (8) 76 (7) — — 68 (8)

а В скобках приведена продолжительность электролиза, ч.

Окисление альдоз

Альдозы при окислении превращаются в соответ ствующие альдоновые кислоты с выходами 60—100 %

$$\begin{array}{c|c} CHO & CO_2H \\ H-C-OH & \xrightarrow{-2e, -2H^+} & H-C-OH \\ R & R & R \end{array}$$

Исследован механизм окисления глюкозы на платине. Окисление происходит в адсорбированном состоянии при 1,0—1,5 В (отн. НВЭ) путем взаимодействия с оксидами платины; первичным продуктом является, вероятно, глюконо-δ-лактон.

Электрохимия гетероциклов

Электролиз гетероциклических систем

Примером атаки азометинового фрагмента кислородсодержащей функциональной группой является реакция окислительной циклизации арилсемикарбазонов до 1,3,4-оксадиазолов в смеси ацетонитрил — уксусная кислота, содержащей серную кислоту, или до триазолинонов в абсолютно безводных условиях (в присутствии уксусного ангидрида). Другим примером может служить анодное окисление N-бензилиден-2-гидроксианилина в ацетонитриле, содержащем NaClO₄, до 2-фенил-1,3-бензоксазола

$$\begin{array}{c}
N = CHPh \\
OH
\end{array}$$

$$\longrightarrow Ph$$

Анодное сочетание пирокатехина с 4-гидроксикумарином

Образование циклической структуры путем сочетания производных фенолов может быть проиллюстрировано на примере реакции анодного сочетания пирокатехина с 4-гидроксикумарином (ячейка без диафрагмы; графитовый анод), приводящая к 11,12-дигидроксикуместану с выходом 95 %.

$$OH + OH OH OH OH$$

$$OH OH OH$$

$$OH OH$$

$$OH OH$$

$$OH OH$$

$$OH OH$$

Примеры образования гетероциклов

1.
$$CH=C(COMe)_2$$

$$\downarrow PH 0,2; -0,4 B$$

$$\downarrow NHOH$$

$$\downarrow$$

$$\begin{array}{c|c}
 & NO_2 \\
 & & 10e + 10H^+ \\
 & & 1/2 \\
\hline
 & NH \\
 & & NH_2
\end{array}$$

6. CH₂CO₂Et CH—CHCO₂Et $H_2C)_3$ CH₂CO₂Et CH=CHCO₂Et (100 %)OCH=CHCO₂Et CH₂CO₂Et H_2C 7. H_2C CH₂CO₂Et OCH=CHCO₂Et (89%)NH CH₂CO₂Et NHCH=CHCO₂Et 8. CH₂CO₂Et NHCH=CHCO₂Et

(86 %)

$$CH=CHCO_2Me$$

$$\xrightarrow{+e}$$

$$CH=CHCO_2Me$$

$$(67 \%)$$

$$CH_{2}R$$

$$CH_{2}R$$

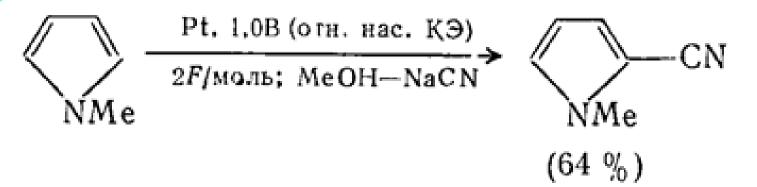
$$CH_{2}R$$

$$RH_{2}C$$

$$RH_{2}C$$

$$RH_{2}C$$

$$RH_{2}C$$


$$RH_{2}C$$

$$RH_{2}C$$

$$RH_{2}C$$

$$RH_{2}C$$

$$RH_{2}C$$

$$Z = CH = CHX \longrightarrow Z = CHCH_2X$$

$$CH = CHY \longrightarrow CHCH_2Y$$

$$Z = \begin{array}{c} -\text{CHO}-\\ | \\ -\text{CHO}-\\ -\text{CHO}-\\ \end{array}$$

$$CH = \text{CHCO}_2\text{Et}$$

$$Et_2\text{C}$$

$$CH = \text{CHCO}_2\text{Et}$$

$$CH = \text{CHCO}_2\text{Et}$$

$$CH = \text{CHCO}_2\text{Et}$$

$$CH = \text{CHCO}_2\text{Et}$$

$$(98 \%)$$

Окислительное сочетание

1.

$$\stackrel{\text{Pt}}{\longrightarrow} 0 \stackrel{\text{H}}{\longrightarrow} 0$$

$$\stackrel{\text{Pt}}{\longrightarrow} 0 = \stackrel{\text{H}}{\longrightarrow} 0$$

3.
$$Ph$$
 Ph
 P

Okohuahue 4.2